

Projekt POIG.02.01.00-06-024/09 "Centrum Nanomateriałów Funkcjonalnych"

Uniwersytet Marii Curie-Skłodowskiej Wydział Chemii, Zakład Technologii Chemicznej Pl. Marii Curie-Skłodowskiej 3 20-031 Lublin tel. +48 (81) 537 55 14, 537 57 96 fax. +48 (81) 537 55 65, 537 57 96 machocki@umcs.lublin.pl, emendyk@umcs.lublin.p www.cnf.umcs.lublin.pl

Centrum Nanomateriałów Funkcjonalnych nowe możliwości badawcze

Ewaryst Mendyk

Grzegorz Słowik Witold Zawadzki Michał Rawski Krzysztof Skrzypiec Andrzej Machocki

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Mikroskopy elektronowe w Laboratorium Analitycznym

Mikroskop skaningowy Phenom World

Mikroskop skaningowy DualBeamQuanta™ 3D FEG

Mikroskop transmisyjny FEI Titan³ G2 60-300

Techniki mikroskopii elektronowej

Mikroskopia transmisyjna - porównanie TEM/STEM

UMCS

Katalizator reformingu parowego metanolu: 30Pt/carbon

www.lab. umcs.lublin.pl

Katalizator reformingu parowego metanolu 3Pt/TiO2

UMCS

TEM image in bright field

UMCS

Ring	Distance [Å]	Phases	hkl
1	3.125	CeO ₂	111
2	2.703	CeO ₂	200
3	2.451	Co ₃ O ₄	311
4	2.02	Co ₃ O ₄	400
5	1.914	CeO ₂	220
6	1.657	Co ₃ O ₄	422
7	1.630	CeO ₂	311
8	1.560	Co ₃ O ₄ /CeO ₂	511/222
9	1.430	Co ₃ O ₄	440
10	1.350	CeO ₂	400
11	1.241	CeO ₂	331
12	1.223	Co ₃ O ₄	622
13	1.104	CeO ₂	422
14	1.042	CeO ₂	511
15	0.957	CeO ₂	440
16	0.915	CeO ₂	531

Katalizator 2K10Co/CeO₂. Dyfrakcja elektronów z przesłoną selektywną (SA)

Obraz TEM w ciemnym polu

dystrybucja krystalitów Co₃O₄

Identyfikacja fazowa

UMCS

www.cnf.umcs.lublin.pl

FFT

* Centrum Nanomateriałów Funkcjonalnych - nowe możliwości badawcze * Lublin- 9.II.2015

UMCS

Analiza strukturalna katalizatora 2K10Co/CeO₂

а Ζ

k t

У W

Analiza strukturalna katalizatora 2K10Co/CeO₂

Nośnik (CeO₂)

Faza aktywna (w formie $-Co_3O_4$) 2 nm - O²⁻, - Co²⁺, - Co³⁺.

O – termination:

UMCS

Obliczenia energii powierzchniowej wykazały, że struktura warstwy wierzchniej typu O-Ce-O, zakończona tlenem jest bardziej stabilna niż Ce-O-Ce.

Katalizator reformingu parowego metanolu: 15Pd/ZnO15Cr – Identyfikacja fazowa

UMCS

UMCS

www.cnf.umcs.lublin.pl

Katalizator reformingu parowego etanolu $2K10Co/CeO_2$ po 33h pracy (H₂O:EtOH = 9:1 mol/mol)

Badania depozytu węglowego - dezaktywacja katalizatora

Katalizator reformingu parowego etanolu $2K10Co/CeO_2$ - po 33h pracy (H₂O:EtOH = 9:1 mol/mol)

Badania depozytu węglowego - dezaktywacja katalizatora

Zastosowanie mikroskopii elektronowej w katalizie jakościowa i ilościowa mikroanaliza rentgenowska EDS

Badania katalizatora $2K10Co/CeO_2$ po 33h pracy reformingu parowego etanolu (H₂O:EtOH = 9:1) - Mapowanie chemiczne

Badanie depozytów węglowych

UMCS

Katalizator świeży 2K9.9Co0.1Ni/CeO2 - 2K9.0Co1.0Ni/CeO2 Mapowanie chemiczne STEM/EDS

* Centrum Nanomateriałów Funkcjonalnych - nowe możliwości badawcze * Lublin- 9.II.2015

Katalizator 2K9.9Co0.1Ni/CeO2 - 2K9.0Co1.0Ni/CeO2 po reformingu parowym 24h: (12:1 H₂O:EtOH mol/mol) - Mapowanie chemiczne STEM-EDS

Katalizator reformingu parowego metanolu: 15Pd/ZnO15Cr

Mapowanie chemiczne STEM-EDS

Mikroskop elektronowy TITAN - mini Galeria

Nanorurki węglowe - wielościenne

Monokryształ arsenku galu - GaAs

Mikroskop skaningowy Phenom World - przykłady zastosowania

Odnóże komara

UMCS

Wełna mineralna

koniec włosa

katalizator

Mikroskop Quanta 3DFEG. Mikroanaliza rentgenowska SEM/EDS

Obraz SEM i mikroanaliza punktowa

Element	W%	At %
С	4.07	10.39
0	22.44	43.02
Na	0.70	0.94
Mg	0.60	0.75
Al	4.72	5.36
Si	4.28	4.67
К	0.31	0.25
Са	0.43	0.33
Ti	0.09	0.06
Fe	61.88	33.99
Ni	0.18	0.09
Cu	0.16	0.08
Zn	0.13	0.06
Total	100.00	100.00

Średni skład ilościowy

Element	W%	At %
C	21.99	33.57
0	36.10	41.36
Na	0.47	0.38
Mg	0.89	0.67
AI	10.90	7.41
Si	16.57	10.82
Р	0.06	0.04
S	2.15	1.23
Cl	0.06	0.03
К	2.10	0.99
Ca	5.07	2.32
Ti	0.41	0.16
Cr	0.04	0 0.01
Mn	0.04	0.01
Fe	2.89	0.95
Ni	0.05	0.02
Zn	0.20	0.06
Total	100.00	100.00

Mapowanie chemiczne. Dystrybucja pierwiastków na powierzchni glinokrzemianu

Mikroskop skaningowy QuantaTM 3D FEG. Mikroanaliza EDS

Mikroanaliza punktowa

Stop eutektyczny: Fe-Mn-C-B-Si-Ni-Cr. Mikroanaliza liniowa (line scan)

www.lab.umcs.lublin.pl

Mikroskop skaningowy QuantaTM 3D FEG - przykłady zastosowania

Dyfrakcja rentgenowska - reflektometria

UMCS STOL

Dyfrakcja rentgenowska - reflektometria

www.lab umcs.lublin.pl

Dyfrakcja rentgenowska - reflektometria

Źródło: Michał Leszczyński: Instytut Niskich temperatur PAN

Typowe materiały:

- Amorficzne
- Polikrystaliczne
- warstwy epitaksjalne
- zakres pomiaru grubości: od 0,5nm do 1000 nm
- Zakres chropowatości: od 0,1 do ok 3 nm
- Zakres pomiary gęstości:
- wysoka gęstość warstw może uniemożliwiać pomiar przykrytych warstw
- wymagana duża różnica gęstości sąsiednich warstw

```
www.lab umcs.lublin.pl
```

Dyfrakcja rentgenowska - metoda niskokątowego rozpraszania SAXS

Pomiar wielkości cząstek TiO₂

Rozkład wielkości cząstek, R_{śr.} = 48Å

П

UMCS

Dyfrakcja rentgenowska - metoda niskokątowego rozpraszania SAXS

R

UMCS

Rozkład wielkości porów w 2 próbkach krzemionki

Badania procesu redukcji katalizatora palladowego metodą dyfrakcji rentgenowskiej w komorze reakcyjnej XRK 900 (Anton Paar)

Wielkość krystalitów PdZn obliczona na podstawie wyników redukcji wodorem w komorze reakcyjnej XRD z zależności Warrena - Scherrera

Temperatura (°C)	Wielkość krystalitów PdZn (nm)		
250	+		
300	++		
350	7,7		
400	12,1		
450	14,0		
500	15,7		

Katalizator palladowy. Proces *in-situ* redukcji wodorem w komorze do badań XRPD.

źródło: Witold Zawadzki Zakład Technologii Chemicznej UMCS

Analiza fazowa ilościowa. Metoda Rietvelda

I Etap- analiza fazowa (baza ICCD PDF4+)

21-01-14A-p1 Rutile, syn 18.4 % Eskolaite, syn 9.4 % Zincite, syn 72.2 % 40000 20000 0 30 40 50 60 70 80 90 100 Position [°2Theta] (Copper (Cu)) 4000 2000 -2000 -4000

II Etap- dopasowanie dyfraktogra	amów
----------------------------------	------

No	Ref. Code	Score	Compound Name	Chemical Formula	Mineral Name	SemiQaunt [%]
1	01-089-8303	72	Titanium Oxide	$Ti O_2$	Rutile	18,4
2	04-009-2109	31	Chromium Oxide	$\operatorname{Cr}_2 \operatorname{O}_3$	Eskolaite	9,4
3	04-009-7657	83	Zinc Oxide	Zn O	Zincite	72,2

www.cnf.umcs.lublin.pl

Zn O; 04-009-7657

Większa szybkość skanowania została osiągnięta przez przeniesienie modulacji Peak Force Tapping z głównego skanera do dodatkowego piezo Z - skanera w holderze sondy skanującej oraz zwiększenie częstości modulacji. Takie rozwiązanie rozszerza pasmo sprzężenia zwrotnego Peak Force Tapping i umożliwia bardzo szybkie skanowanie nawet dużych obszarów bez utraty wysokiej rozdzielczości

UMCS

holder ScanAsyst-HR

Sonda (igła) ScanAsyst-Air-HR (Bruker) Tip radius: 10 +/- 5nm Freq: 130 +/- 30 kHz k: 0.4 +/- 0.2 N/m Length: 60 µm

www.cnf.umcs.lublin.pl

* Centrum Nanomateriałów Funkcjonalnych - nowe możliwości badawcze * Lublin - 9.II.2015

UMCS

Mikroskopia Sił Atomowych Wysokiej Rozdzielczości ScanAsyst-HR

Tapping 1Hz ~4.5 minut ScanAsyst-HR 10 Hz ~30 second

www.lab.umcs.lublin.pl

Mikroskopia Sił Atomowych Wysokiej Rozdzielczości ScanAsyst-HR

bakterie *E. coli* JM 83. Zdjęcie wykonane metodą ScanAsyst-HR. Rozmiar skanu: 30 μm x 30 μm. Rozdzielczość obrazu: 1536x1536 pikseli. Częstotliwość skanowania: 0,5 Hz. Szybkość skanowania: 30 μm/s www.cnf.umcs.lublin.pl

Mikroskopia Sił Atomowych PeakForce QNM

Membrana – grafen

Mikroskopia Sił Atomowych - mini Galeria

www.lab.umcs.lublin.pl

Mikroskop metalograficzny: Nikon Eclipse MA 200M

www.lab.umcs.lublin.pl

Membrana grafen . Moduł EDF (Extended Depth of Field)

UMCS

Płytka kalibracyjna

Chropowatość Falistość Tekstura Profile Grubość warstw transparentnych

- wszystkie znane i stosowane dynamiczne techniki temperaturowo-programowane z udziałem gazów i par: TPD, TPR, TPO, TPReaction, itp.
- temperatura programowana od -100° do 1100°C (0,1-50°C/min.)
- układy dozowania gazów i par
- detektory: TCD oraz MS (*Hiden* HPR-20 Research Grade)
- programowanie eksperymentów, automatyczne sterowanie, kontrola oraz zbieranie i obróbka danych

Informacje o:

- rozkładzie i sile miejsc aktywnych o różnej reaktywności i aktywności katalitycznej (heterogeniczność powierzchni)
- reaktywności ciał stałych w atmosferach redukujących, utleniających, innych gazów i par
- reaktywności depozytów węglowych utworzonych w reakcjach z udziałem związków organicznych na katalizatorach
- kierunku i intensywności przemian chemicznych chemisorbowanych reagentów i produktów przejściowych
- kwasowości i zasadowości powierzchni ciał stałych (katalizatorów i adsorbentów)

Analizator AutoChem II 2920 (*Micromeritics*) do metod temperaturowo-programowanych

System aparaturowy do badań katalizatorów i reakcji katalitycznych metodami izotopowymi

- adaptowana wg naszego projektu jednostka PID Eng&Tech Microactivity Reference Catalytic Reactor
- spektrometr mas *Hiden* HPR-20 Research Grade, do 200 amu
- czterokanałowy mikrochromatograf Agilent 490-GC
- programowanie eksperymentów, automatyczne sterowanie i kontrola parametrów reakcji, automatyczne dozowanie on-line analizowanych próbek oraz zbieranie i obróbka danych

Informacje o katalizatorach i reakcjach katalitycznych:

- liczba i różnorodność miejsc aktywnych na powierzchni "pracujących" katalizatorów i ich rzeczywista aktywność
- powierzchniowe stężenie przejściowych cząsteczek (species) prowadzących do produktów reakcji w jej stanie stacjonarnym
- czas "życia" reagentów, produktów i przejściowych "species"
- wymiana atomów pomiędzy reagentami z fazy gazowej
 i katalizatorem oraz związkami chemicznymi na jego powierzchni
- udział tlenu z sieci krystalicznej tlenkowych nanomateriałów katalitycznych w przemianach reagentów
- sekwencja przejściowych etapów reakcji na powierzchni nanomateriałów katalitycznych w jej stanie stacjonarnym

System aparaturowy do badań katalizatorów i reakcji katalitycznych metodami izotopowymi

katalityczne systemy reaktorowe (PID Eng&Tech) z chromatografami (Bruker, Agilent)

- dwa systemy PID Microactivity Reference Catalytic Reactor
- wymienne reaktory katalityczne z piecem rurowym do 950°C
- układy niezależnego dozowania 6 gazów i 2 par reakcyjnych
- termostat (hot-box) zapobiegający kondensacji trudno-lotnych surowców i produktów reakcji
- 2 zestawy wielokanałowych chromatografów 450-GC i 430-GC oraz mikrochromatografów 490-GC
- programowanie procedur badawczych, zautomatyzowane sterowanie i kontrola parametrów reakcji, automatyczne dozowanie on-line analizowanych produktów oraz zbieranie i obróbka danych

Do badań aktywności i selektywności heterogenicznych nanomateriałów katalitycznych w reakcjach chemicznych

Kilka systemów reaktorowych zapewnia istotne przyspieszenie badań

- idealne do długotrwałych badań stabilności właściwości katalizatorów w czasie procesu chemicznego
- badanie różnych katalitycznych procesów chemicznych w tym samym czasie

katalityczne systemy reaktorowe (PID Eng&Tech) z chromatografami (Bruker, Agilent)

System analizatora termograwimetrycznego DynTHERM MP-ST (*Rubotherm*)

- waga oddzielona od przepływowej części reaktorowej, zakres zmian masy 0-10 g, rozdzielczość 1 µg, automatyczna korekcja zera wagi
 - ciśnienie od próżni 20 mbar do 40 bar
 - temperatura od RT do 1100°C (izotermicznie lub programowane zmiany temperatury)
 - układy dozowania gazów i par (pod niskim i wysokim ciśnieniem)
 - spektrometr masowy do analizy produktów reakcji chemicznych
 - programowanie eksperymentów, automatyczne sterowanie i kontrola parametrów reakcji oraz zbieranie i obróbka danych

Do badań in-situ zjawisk, którym towarzyszą zmiany masy, np.

- tworzenie depozytów węglowych na nanomateriałach katalitycznych w reakcjach chemicznych
- utlenianie, korozja, redukcja i rozkład materiałów
- zjawiska sorpcyjne

w realnych, złożonych atmosferach i warunkach reakcyjnych (temperaturze, ciśnieniu i przepływie gazów i par) z jednoczesną informacją o zmianie składu fazy gazowej i lotnych produktach reakcji chemicznych

and terial on the constant

System analizatora termograwimetrycznego DynTHERM MP-ST (*Rubotherm*)

reforming parowy etanolu \rightarrow zawęglanie katalizatorów

System do badań aktywności i selektywności katalizatorów Dziękuję za uwagę

mikroskopy optyczne

Analizator adsorpcji

mikroskop Ramana

Spektrometr FTIR/Raman

Mikroskop AFM

chemisorpcja

Spektrometr XRF

Spektrometr FT NMR www.lab.umcs.lublin.pl

XPS, AES, UPS, ISS

TPR, TPD, TPO, MS